Copied to
clipboard

G = C22⋊C4×C17order 272 = 24·17

Direct product of C17 and C22⋊C4

direct product, metabelian, nilpotent (class 2), monomial, 2-elementary

Aliases: C22⋊C4×C17, C22⋊C68, C23.C34, C34.12D4, (C2×C34)⋊3C4, (C2×C4)⋊1C34, (C2×C68)⋊2C2, C2.1(C2×C68), C2.1(D4×C17), C34.17(C2×C4), C22.2(C2×C34), (C22×C34).1C2, (C2×C34).13C22, SmallGroup(272,21)

Series: Derived Chief Lower central Upper central

C1C2 — C22⋊C4×C17
C1C2C22C2×C34C2×C68 — C22⋊C4×C17
C1C2 — C22⋊C4×C17
C1C2×C34 — C22⋊C4×C17

Generators and relations for C22⋊C4×C17
 G = < a,b,c,d | a17=b2=c2=d4=1, ab=ba, ac=ca, ad=da, dbd-1=bc=cb, cd=dc >

2C2
2C2
2C4
2C22
2C4
2C22
2C34
2C34
2C68
2C68
2C2×C34
2C2×C34

Smallest permutation representation of C22⋊C4×C17
On 136 points
Generators in S136
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17)(18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34)(35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51)(52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68)(69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85)(86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102)(103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119)(120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136)
(1 133)(2 134)(3 135)(4 136)(5 120)(6 121)(7 122)(8 123)(9 124)(10 125)(11 126)(12 127)(13 128)(14 129)(15 130)(16 131)(17 132)(18 110)(19 111)(20 112)(21 113)(22 114)(23 115)(24 116)(25 117)(26 118)(27 119)(28 103)(29 104)(30 105)(31 106)(32 107)(33 108)(34 109)(35 68)(36 52)(37 53)(38 54)(39 55)(40 56)(41 57)(42 58)(43 59)(44 60)(45 61)(46 62)(47 63)(48 64)(49 65)(50 66)(51 67)(69 100)(70 101)(71 102)(72 86)(73 87)(74 88)(75 89)(76 90)(77 91)(78 92)(79 93)(80 94)(81 95)(82 96)(83 97)(84 98)(85 99)
(1 73)(2 74)(3 75)(4 76)(5 77)(6 78)(7 79)(8 80)(9 81)(10 82)(11 83)(12 84)(13 85)(14 69)(15 70)(16 71)(17 72)(18 58)(19 59)(20 60)(21 61)(22 62)(23 63)(24 64)(25 65)(26 66)(27 67)(28 68)(29 52)(30 53)(31 54)(32 55)(33 56)(34 57)(35 103)(36 104)(37 105)(38 106)(39 107)(40 108)(41 109)(42 110)(43 111)(44 112)(45 113)(46 114)(47 115)(48 116)(49 117)(50 118)(51 119)(86 132)(87 133)(88 134)(89 135)(90 136)(91 120)(92 121)(93 122)(94 123)(95 124)(96 125)(97 126)(98 127)(99 128)(100 129)(101 130)(102 131)
(1 57 133 109)(2 58 134 110)(3 59 135 111)(4 60 136 112)(5 61 120 113)(6 62 121 114)(7 63 122 115)(8 64 123 116)(9 65 124 117)(10 66 125 118)(11 67 126 119)(12 68 127 103)(13 52 128 104)(14 53 129 105)(15 54 130 106)(16 55 131 107)(17 56 132 108)(18 88 42 74)(19 89 43 75)(20 90 44 76)(21 91 45 77)(22 92 46 78)(23 93 47 79)(24 94 48 80)(25 95 49 81)(26 96 50 82)(27 97 51 83)(28 98 35 84)(29 99 36 85)(30 100 37 69)(31 101 38 70)(32 102 39 71)(33 86 40 72)(34 87 41 73)

G:=sub<Sym(136)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17)(18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34)(35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51)(52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68)(69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85)(86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102)(103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119)(120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136), (1,133)(2,134)(3,135)(4,136)(5,120)(6,121)(7,122)(8,123)(9,124)(10,125)(11,126)(12,127)(13,128)(14,129)(15,130)(16,131)(17,132)(18,110)(19,111)(20,112)(21,113)(22,114)(23,115)(24,116)(25,117)(26,118)(27,119)(28,103)(29,104)(30,105)(31,106)(32,107)(33,108)(34,109)(35,68)(36,52)(37,53)(38,54)(39,55)(40,56)(41,57)(42,58)(43,59)(44,60)(45,61)(46,62)(47,63)(48,64)(49,65)(50,66)(51,67)(69,100)(70,101)(71,102)(72,86)(73,87)(74,88)(75,89)(76,90)(77,91)(78,92)(79,93)(80,94)(81,95)(82,96)(83,97)(84,98)(85,99), (1,73)(2,74)(3,75)(4,76)(5,77)(6,78)(7,79)(8,80)(9,81)(10,82)(11,83)(12,84)(13,85)(14,69)(15,70)(16,71)(17,72)(18,58)(19,59)(20,60)(21,61)(22,62)(23,63)(24,64)(25,65)(26,66)(27,67)(28,68)(29,52)(30,53)(31,54)(32,55)(33,56)(34,57)(35,103)(36,104)(37,105)(38,106)(39,107)(40,108)(41,109)(42,110)(43,111)(44,112)(45,113)(46,114)(47,115)(48,116)(49,117)(50,118)(51,119)(86,132)(87,133)(88,134)(89,135)(90,136)(91,120)(92,121)(93,122)(94,123)(95,124)(96,125)(97,126)(98,127)(99,128)(100,129)(101,130)(102,131), (1,57,133,109)(2,58,134,110)(3,59,135,111)(4,60,136,112)(5,61,120,113)(6,62,121,114)(7,63,122,115)(8,64,123,116)(9,65,124,117)(10,66,125,118)(11,67,126,119)(12,68,127,103)(13,52,128,104)(14,53,129,105)(15,54,130,106)(16,55,131,107)(17,56,132,108)(18,88,42,74)(19,89,43,75)(20,90,44,76)(21,91,45,77)(22,92,46,78)(23,93,47,79)(24,94,48,80)(25,95,49,81)(26,96,50,82)(27,97,51,83)(28,98,35,84)(29,99,36,85)(30,100,37,69)(31,101,38,70)(32,102,39,71)(33,86,40,72)(34,87,41,73)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17)(18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34)(35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51)(52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68)(69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85)(86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102)(103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119)(120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136), (1,133)(2,134)(3,135)(4,136)(5,120)(6,121)(7,122)(8,123)(9,124)(10,125)(11,126)(12,127)(13,128)(14,129)(15,130)(16,131)(17,132)(18,110)(19,111)(20,112)(21,113)(22,114)(23,115)(24,116)(25,117)(26,118)(27,119)(28,103)(29,104)(30,105)(31,106)(32,107)(33,108)(34,109)(35,68)(36,52)(37,53)(38,54)(39,55)(40,56)(41,57)(42,58)(43,59)(44,60)(45,61)(46,62)(47,63)(48,64)(49,65)(50,66)(51,67)(69,100)(70,101)(71,102)(72,86)(73,87)(74,88)(75,89)(76,90)(77,91)(78,92)(79,93)(80,94)(81,95)(82,96)(83,97)(84,98)(85,99), (1,73)(2,74)(3,75)(4,76)(5,77)(6,78)(7,79)(8,80)(9,81)(10,82)(11,83)(12,84)(13,85)(14,69)(15,70)(16,71)(17,72)(18,58)(19,59)(20,60)(21,61)(22,62)(23,63)(24,64)(25,65)(26,66)(27,67)(28,68)(29,52)(30,53)(31,54)(32,55)(33,56)(34,57)(35,103)(36,104)(37,105)(38,106)(39,107)(40,108)(41,109)(42,110)(43,111)(44,112)(45,113)(46,114)(47,115)(48,116)(49,117)(50,118)(51,119)(86,132)(87,133)(88,134)(89,135)(90,136)(91,120)(92,121)(93,122)(94,123)(95,124)(96,125)(97,126)(98,127)(99,128)(100,129)(101,130)(102,131), (1,57,133,109)(2,58,134,110)(3,59,135,111)(4,60,136,112)(5,61,120,113)(6,62,121,114)(7,63,122,115)(8,64,123,116)(9,65,124,117)(10,66,125,118)(11,67,126,119)(12,68,127,103)(13,52,128,104)(14,53,129,105)(15,54,130,106)(16,55,131,107)(17,56,132,108)(18,88,42,74)(19,89,43,75)(20,90,44,76)(21,91,45,77)(22,92,46,78)(23,93,47,79)(24,94,48,80)(25,95,49,81)(26,96,50,82)(27,97,51,83)(28,98,35,84)(29,99,36,85)(30,100,37,69)(31,101,38,70)(32,102,39,71)(33,86,40,72)(34,87,41,73) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17),(18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34),(35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51),(52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68),(69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85),(86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102),(103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119),(120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136)], [(1,133),(2,134),(3,135),(4,136),(5,120),(6,121),(7,122),(8,123),(9,124),(10,125),(11,126),(12,127),(13,128),(14,129),(15,130),(16,131),(17,132),(18,110),(19,111),(20,112),(21,113),(22,114),(23,115),(24,116),(25,117),(26,118),(27,119),(28,103),(29,104),(30,105),(31,106),(32,107),(33,108),(34,109),(35,68),(36,52),(37,53),(38,54),(39,55),(40,56),(41,57),(42,58),(43,59),(44,60),(45,61),(46,62),(47,63),(48,64),(49,65),(50,66),(51,67),(69,100),(70,101),(71,102),(72,86),(73,87),(74,88),(75,89),(76,90),(77,91),(78,92),(79,93),(80,94),(81,95),(82,96),(83,97),(84,98),(85,99)], [(1,73),(2,74),(3,75),(4,76),(5,77),(6,78),(7,79),(8,80),(9,81),(10,82),(11,83),(12,84),(13,85),(14,69),(15,70),(16,71),(17,72),(18,58),(19,59),(20,60),(21,61),(22,62),(23,63),(24,64),(25,65),(26,66),(27,67),(28,68),(29,52),(30,53),(31,54),(32,55),(33,56),(34,57),(35,103),(36,104),(37,105),(38,106),(39,107),(40,108),(41,109),(42,110),(43,111),(44,112),(45,113),(46,114),(47,115),(48,116),(49,117),(50,118),(51,119),(86,132),(87,133),(88,134),(89,135),(90,136),(91,120),(92,121),(93,122),(94,123),(95,124),(96,125),(97,126),(98,127),(99,128),(100,129),(101,130),(102,131)], [(1,57,133,109),(2,58,134,110),(3,59,135,111),(4,60,136,112),(5,61,120,113),(6,62,121,114),(7,63,122,115),(8,64,123,116),(9,65,124,117),(10,66,125,118),(11,67,126,119),(12,68,127,103),(13,52,128,104),(14,53,129,105),(15,54,130,106),(16,55,131,107),(17,56,132,108),(18,88,42,74),(19,89,43,75),(20,90,44,76),(21,91,45,77),(22,92,46,78),(23,93,47,79),(24,94,48,80),(25,95,49,81),(26,96,50,82),(27,97,51,83),(28,98,35,84),(29,99,36,85),(30,100,37,69),(31,101,38,70),(32,102,39,71),(33,86,40,72),(34,87,41,73)]])

170 conjugacy classes

class 1 2A2B2C2D2E4A4B4C4D17A···17P34A···34AV34AW···34CB68A···68BL
order122222444417···1734···3434···3468···68
size11112222221···11···12···22···2

170 irreducible representations

dim1111111122
type++++
imageC1C2C2C4C17C34C34C68D4D4×C17
kernelC22⋊C4×C17C2×C68C22×C34C2×C34C22⋊C4C2×C4C23C22C34C2
# reps121416321664232

Matrix representation of C22⋊C4×C17 in GL3(𝔽137) generated by

100
0740
0074
,
100
010
098136
,
100
01360
00136
,
3700
098135
07539
G:=sub<GL(3,GF(137))| [1,0,0,0,74,0,0,0,74],[1,0,0,0,1,98,0,0,136],[1,0,0,0,136,0,0,0,136],[37,0,0,0,98,75,0,135,39] >;

C22⋊C4×C17 in GAP, Magma, Sage, TeX

C_2^2\rtimes C_4\times C_{17}
% in TeX

G:=Group("C2^2:C4xC17");
// GroupNames label

G:=SmallGroup(272,21);
// by ID

G=gap.SmallGroup(272,21);
# by ID

G:=PCGroup([5,-2,-2,-17,-2,-2,680,701]);
// Polycyclic

G:=Group<a,b,c,d|a^17=b^2=c^2=d^4=1,a*b=b*a,a*c=c*a,a*d=d*a,d*b*d^-1=b*c=c*b,c*d=d*c>;
// generators/relations

Export

Subgroup lattice of C22⋊C4×C17 in TeX

׿
×
𝔽